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Abstract: The utilization of polarimetric weather radars for optimizing cloud models is a next
frontier of research. It is widely understood that inadequacies in microphysical parameterization
schemes in numerical weather prediction (NWP) models is a primary cause of forecast uncertainties.
Due to its ability to distinguish between hydrometeors with different microphysical habits and to
identify “polarimetric fingerprints” of various microphysical processes, polarimetric radar emerges
as a primary source of needed information. There are two approaches to leverage this information
for NWP models: (1) radar microphysical and thermodynamic retrievals and (2) forward radar
operators for converting the model outputs into the fields of polarimetric radar variables. In this
paper, we will provide an overview of both. Polarimetric measurements can be combined with cloud
models of varying complexity, including ones with bulk and spectral bin microphysics, as well as
simplified Lagrangian models focused on a particular microphysical process. Combining polarimetric
measurements with cloud modeling can reveal the impact of important microphysical agents such
as aerosols or supercooled cloud water invisible to the radar on cloud and precipitation formation.
Some pertinent results obtained from models with spectral bin microphysics, including the Hebrew
University cloud model (HUCM) and 1D models of melting hail and snow coupled with the NSSL
forward radar operator, are illustrated in the paper.

Keywords: polarimetric radar forward operators; cloud models; radar microphysical and
thermodynamic retrievals

1. Introduction

Doppler polarimetric radars have become the standard for operational weather radars around
the world. Compared to single-polarization radars, dual-polarization radars substantially improve
data quality, precipitation estimation, hydrometeor classification, and severe weather warnings.
Comprehensive overviews of radar polarimetry and its utilization for weather observations are
described in the monographs of Bringi and Chandrasekar [1], Zhang [2] and Ryzhkov and Zrnic [3].

The utilization of polarimetric weather radars to optimize numerical weather prediction (NWP) models
is a new frontier of research. It is widely understood that inadequate microphysical parameterization
schemes in NWP models are a primary source of forecast uncertainties (e.g., Morrison et al. [4] and
Fan et al. [5]). Observational data provided by ground-based weather surveillance and cloud radars, lidars,
radiometers, and airborne or spaceborne remote sensors are crucial for constraining model microphysical
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schemes. Due to its ability to distinguish between hydrometeors with different microphysical habits and to
identify the “polarimetric fingerprints” of various microphysical processes, polarimetric radar has emerged
as an important source of needed information.

The purpose of this paper is to provide a review of some of the important information that
polarimetric weather radars can provide that may be of use to the cloud modeling community.
We hope that through increased awareness of polarimetric radar forward operators, microphysical
and thermodynamic retrievals and other polarimetric products and data can be integrated into cloud
models through improved data assimilation and leveraged to assess and validate numerical models
and/or microphysics schemes.

In this review, we will focus on the applications of longer-wavelength polarimetric radars
operating at centimeter radar wavelengths at S, C, and X microwave frequency bands which commonly
comprise operational weather radar networks around the world. These radars are used for surveillance
of large areas with extended radar coverage as opposed to cloud radars operating at millimeter
wavelengths at Ka- or W-band frequencies. Weather surveillance radars do not have sufficient
sensitivity to detect echoes from atmospheric aerosols or cloud particles (liquid or solid) with sizes
less than 50–100 microns but have great advantage for remote sensing of deep convective storms
containing large hydrometeors producing prohibitively strong attenuation at cloud radar frequencies.
Although centimeter-wavelength radars do not see small cloud droplets, they are often capable
of detecting non-precipitating clouds containing ice or clear-air turbulence associated with Bragg
scattering. Melnikov et al. [6] claim that longer-wavelength operational radars such as WSR-88D in the
US have the potential to be used as “cloud radars”.

In addition to the three radar variables commonly measured by single-polarization Doppler radars
(i.e., radar reflectivity Z, mean Doppler velocity, and Doppler spectrum width), polarimetric radars can
provide estimates of differential reflectivity ZDR, specific differential phase KDP, linear depolarization
ratio (LDR), cross-correlation coefficient ρhv, specific attenuation A, and specific differential attenuation
ADP. For definitions and the physical meanings of these polarimetric variables, a reader can consult
basic monographs [1–3]. Using such multi-parameter measurements, one can discriminate between
hydrometeors with different shapes, orientations, and phase compositions; reduce uncertainties in
the retrievals of size distributions of atmospheric particles that are generally characterized by at
least three parameters; and identify polarimetric signatures attributed to different microphysical
processes. These include the evaporation, coalescence, and breakup of raindrops; depositional growth,
sublimation, and aggregation of ice/snow; and the processes involving mixed-phase hydrometeors such
as melting, freezing, refreezing, and riming. Although the processes of cloud and ice nucleation and the
initial condensation growth of small particles are invisible to the radar, their impacts can be indirectly
identified through their influence on the polarimetric characteristics of clouds at later stages of cloud
development when larger particles are formed. It is noteworthy that multiple polarimetric variables
are measured in the same radar resolution volume as opposed to multi-frequency measurements from
multiple radars, for which the matching of the sampling volumes is always a challenge. This is a
reason why multi-frequency retrievals of microphysical and thermodynamic characteristics of clouds
with ground-based radars are primarily confined in the research domain whereas polarimetric radar
retrievals can be easily implemented on existing operational radar networks. Of course, the use of
polarimetric radars in conjunction with cloud models is still a subject of exploratory research, but we
believe that operational polarimetric radars are a primary resource for optimizing NWP models on a
national scale in the foreseeable future.

There are two approaches for incorporating information from dual-polarization radars into NWP
models: (1) microphysical and thermodynamic retrievals from radar (which is a way of converting
radar information into quantities that the model prognoses) and (2) forward operators that convert the
model output into polarimetric radar fields. In this paper, we will provide an overview of both. The idea
of using forward operators for assimilating polarimetric radar information into NWP models is also
explored in the recent article of Zhang et al. [7]. The Zhang et al. paper focuses on a unified statistical
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approach for model performance optimization based on synthesizing observation-based retrievals
and model analyses. Such an approach requires knowledge of the background error covariance and
observation error covariance stipulated by the theory of optimal estimation. In our article, we focus
exclusively on the direct, observation-based retrievals (microphysical and thermodynamic) using
polarimetric radar data.

The paper is organized as follows. We begin with a general overview of the electromagnetic
model of scattering and forward operators in Section 2. The microphysical and thermodynamic
radar retrievals are described in Sections 3 and 4, respectively, followed by conclusions in Section 5.
Formulas for computing different polarimetric radar variables from the output of cloud models are in
the Appendix A.

2. Electromagnetic Model of Scattering and Forward Operators

2.1. Scattering by Individual Hydrometeor

The polarimetric properties of most meteorological scatterers are generally well-quantified if
they are modeled as spheroids with oblate or prolate shapes. The characteristics of electromagnetic
scattering by spheroidal particles depend on their size, shape, orientation, and physical composition
and are described in terms of the scattering matrix S, which has the following form for a single
spheroidal hydrometeor with an axis of symmetry a and transverse axis b (Holt [8], Ryzhkov [9],
and Ryzhkov and Zrnic [3]):

S =

 (s(π)a − s(π)b ) sin2 ψ sin2 α+ s(π)b (s(π)a − s(π)b ) sin2 ψ sinα cosα

(s(π)a − s(π)b ) sin2 ψ sinα cosα (s(π)a − s(π)b ) sin2 ψ cos2 α+ s(π)b

 (1)

In Equation (1), sa
(π) is the backscattering amplitude if the electric field vector of the incident

electromagnetic wave is parallel to the symmetry axis of the hydrometeor, and sb
(π) stands for the

backscattering amplitude if the electric field vector is perpendicular to the symmetry axis. Angles α
and Ψ characterize the orientation of the spheroid and are illustrated in Figure 1. Strictly speaking,
expression (1) for S is valid for particles such as raindrops at radar frequencies up to 35 GHz provided
that Ψ > 80◦ (Holt and Shepherd [10]), but it can be universally applied at lower frequencies for the
majority of practical applications. For more rigorous modeling of scattering by spheroids, the reader is
referred to Vivekanandan et al. [11].
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filled with nonspherical hydrometeors, the complex voltages of the radar return at orthogonal 
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Figure 1. Scattering geometry. Direction N denotes the orientation of the symmetry axis of the particle,
and k represents the direction of wave propagation (which is perpendicular to the polarization plane
and lies in the x, z plane). The polarization plane is depicted by the grey ellipse. The x axis is true
vertical, and y and z are the orthogonal horizontal directions. The canting angle α is the angle between
the projections of vector N and true vertical x on the polarization plane, ψ is the angle between N and
k, and the antenna elevation is β.
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If the electromagnetic waves transmitted and received by the radar propagate in a medium filled
with nonspherical hydrometeors, the complex voltages of the radar return at orthogonal polarizations
depend not only on the elements of the scattering matrix S of the hydrometeor but also on the
polarization properties of the propagation medium characterized by the transmission matrix T.
The resulting voltage vector Vr of the received signal is given by (Ryzhkov and Zrnic [3]).

Vr = TSTVt (2)

where Vt is the voltage vector characterizing a transmitted wave. Whereas the scattering matrix S is
characterized by the “backscattering” amplitudes sa

(π) and sb
(π) for the scatterer in the radar resolution

volume, the transmission matrix T is determined by the “forward scattering” amplitudes sa
(0) and

sb
(0) of the scatterers located along the propagation path (e.g., Bringi and Chandrasekar [1], Zhang [2],

and Ryzhkov and Zrnic [3]).
If the hydrometeors are relatively small compared to the radar wavelength λ and are modeled as

oblate or prolate spheroids, then simple analytical formulas for the forward scattering and backscattering
amplitudes s(0,π)

a and s(0,π)
b can be obtained in the Rayleigh approximation (Van de Hulst [12]):

s(0)a,b = s(π)a,b =
π2D3

6λ2
1

La,b +
1
ε−1

, (3)

where D = (ab2)1/3 is the equivolume diameter of the particle, ε is its dielectric constant, and La and Lb

are the shape parameters defined as

La =
1 + f 2

f 2

(
1−

arctan f
f

)
, f =

√
b2

a2 − 1, Lb =
1− La

2
, (4)

for oblate spheroids (a < b) and

La =
1− e2

e2

( 1
2e

ln
(1− e

1− e

)
− 1

)
, e =

√
1−

b2

a2 , Lb =
1− La

2
, (5)

for prolate spheroids (a > b).
The dielectric constant ε is a function of the radar wavelength; phase composition (e.g., water, ice,

air, or some combination thereof); temperature; and density of the scattering material. For mixed-phase
particles, ε depends on the relative fractions of water, solid ice, and air, with various mixing formulas
used for computing ε of such hydrometeors, the most popular of which were suggested by Maxwell
Garnett [13]. Uncertainties arise when using the Maxwell Garnett mixing formulas, as they do not yield
a unique value of ε for a given mass water fraction but, rather, values dependent on the distribution
of water within the mixed-phase particle. A model of a two-layer spheroid is a reasonable choice
to treat water-coated graupel and hail or ice-coated supercooled freezing raindrops. A closed-form
analytical solution also exists for two-layer spheroids within the Rayleigh scattering regime (Bohren
and Huffman [14]).

The Rayleigh approximation (3) is valid if the ratio (or “resonance parameter”) RP = D
∣∣∣ε∣∣∣1/2/λ

is less than 0.3–0.4 (Ryzhkov et al. [15]). It provides a very simple and economic way to compute
scattering amplitudes for a wide range of practical problems. Moreover, the closed-form solution is
instrumental for straightforward physical interpretation of the results. If the scatterers are sufficiently
large with respect to the radar wavelength, then numerical methods such as the “T-matrix” are used
to compute the scattering amplitudes (e.g., Waterman [16], Barber and Yeh [17], Mishchenko [18],
and Bringi and Chandrasekar [1]). For large, uniformly filled spheroids, the Mishchenko [18] T-matrix
code is a standard solution. A two-layer version of the T-matrix code developed by Bringi and
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Seliga [19] can be used for spheroidal ice-coated freezing drops and water-coated graupel particles and
hailstones (e.g., Aydin and Zhao [20], Depue et al. [21], and Ryzhkov et al. [15,22]).

Certain types of ice hydrometeors, such as graupel, hail, and dendritic ice crystals, may have
shapes that can differ significantly from spheroids. A relatively simple Rayleigh-Gans approximation
can be utilized for computations of the backscattering cross-sections for snowflakes having arbitrary
shapes and very low density (Lu et al. [23]). While the Rayleigh-Gans methodology is capable of
capturing the effects of resonance scattering in snow at millimeter radar wavelengths, it cannot be used
for quantification of its polarimetric properties which are significantly “muffled” for low-density snow.

More advanced techniques exist for calculating the scattering from nonspheroidal particles. Aydin
and Seliga [24] used Waterman’s [25] extended boundary condition technique to compute cross-sections
at orthogonal polarizations for conical graupel. Lu et al. [26] created a database of single-scattering
characteristics of select ice particles with complex shapes (such as plates, columns, branched planar
crystals, and conical graupel) using numerical methods, including the Generalized Multi-particle
Mie (GMM) method (Xu [27]) and the discrete dipole approximation (DDA) method (Yurkin and
Hoekstra [28]). GMM models complex particles as clusters of spheres, whereas DDA models them as
cluster of dipoles. Mirkovic [29] computed the elements of the scattering matrix for hail of irregular
shapes using the Method of Moments (MoM) (Harrington [30]) as part of the WIre-PLate-Dielectric
(WIPL-D) solver package (WIPL-D [31]), which can be applied for scatterers with arbitrary shapes.
Although the spheroidal model of hydrometeors is widely accepted in the majority of scattering
computations and interpretation of observations, some recent simulation studies (e.g., Botta et al. [32],
Tyynela et al. [33], Leinonen et al. [34], Tyynela and Chandrasekar [35], Ori et al. [36], Leinonen and
Moisseev [37], and Schrom and Kumjian [38]) indicate that this model has to be used with caution for
branched planar ice crystals and aggregated snowflakes, particularly for radar frequencies higher than
10 GHz. Botta et al. [32] utilized the GMM technique for computing backscattering cross-sections σb of
dry and melting snow aggregates and found out that, for sizes larger than 3 mm, the GMM yield values
of σb several dB higher than the traditional T-matrix method that assumes uniformly filled spheroidal
particles. The difference is well over 7 dB at the Ka band (35.6 GHz). Tyynela et al. [33] and Ori et al. [36]
reported even larger discrepancies at Ka and W bands using the DDA computations. Schrom and
Kumjian [38] also demonstrated significant differences in the scattering amplitudes computed by the
DDA method for branched planar crystals and their lower-density spheroidal equivalents with the
same mass, aspect ratio, and maximal dimensions.

All these findings indicate three primary limitations of the T-matrix method and uniform spheroidal
model for computations of the scattering characteristics of ice and snow particles. Firstly, it may
not be applicable at radar frequencies higher than 10 GHz. Secondly, T-matrix computations yield
unacceptable errors for very anisotropic particles with aspect ratios of less than 0.2 (for oblates) and
greater than 5 (for prolates). Finally, the intrinsic uncertainty in the determination of the effective
dielectric constant of a uniformly filled spheroid composed of ice, water, and air can have a significant
impact on the scattering parameters of hydrometeors regardless of the radar wavelength (Fabry and
Szyrmer [39]).

The GMM, DDA, and MoM techniques do not have such limitations. They can be applied at
any radar wavelength for scatterers of arbitrary shape, and there is no need to use mixing formulas
for the effective dielectric constant of a mixture. It is important that these models take into account
electromagnetic interactions between elementary blocks (dipoles or spheres) comprising the modeled
hydrometeors (e.g., snow particles). These methods substantially reduce the constructive interference
that leads to strong resonance effects typical of spheroidal models with rigid boundaries. However,
such benefits come at high computational cost. The pros and cons for the choice of a particular
scattering technique (GMM, DDA, or MoM) are not well-established, although Lu et al. [26] consider
DDA more accurate than GMM for computing the scattering properties of pristine ice crystals,
and Chobanyan et al. [40] claim that the MoM algorithm works much faster than DDA for relatively
simple hydrometeor shapes.
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While more accurate, these methods are computationally expensive and cannot be used for
online computations. Therefore, in order to widely use these approaches, precalculated lookup tables
or databases of the scattering characteristics have to be created and made available to the research
community. Examples of such databases and relevant references can be found in Lu et al. [26].

2.2. Polarimetric Radar Forward Operators

Polarimetric radar forward operators (PRFOs) are used to convert the output from NWP models
into commonly observed polarimetric variables: radar reflectivity factor at horizontal polarization
ZH, differential reflectivity ZDR, specific differential phase KDP, linear depolarization ratio LDR,
cross-correlation coefficient ρhv, specific attenuation Ah at horizontal polarization, and specific
differential attenuation ADP. All of these radar variables can be expressed via second moments of
the scattering matrix S of an ensemble of hydrometeors in the radar resolution volume (Bringi and
Chandrasekar [1], Zhang [2], and Ryzhkov and Zrnic [3]).

The scattering matrix of an ensemble of hydrometeors depends on the distributions of their sizes,
shapes, and orientations. Cloud models with spectral bin microphysics provide size distributions
(SDs) of hydrometeors explicitly over discrete size bins without assuming a certain functional form for
each SD. Cloud models with bulk microphysics solve prognostic equations for one or more quantities
proportional to one or more bulk moments of the SD, such as mass mixing ratio (proportional to
the 3rd moment and commonly used in single-moment schemes) and total number concentration
(proportional to the 0th moment and commonly used with the mass mixing ratio in double-moment
schemes). The triple-moment scheme of Milbrandt and Yau [41] additionally prognoses reflectivity,
which is proportional to the 6th moment of the SD. Commonly, either exponential or gamma size
distributions are assumed with the parameters derived from the prognostic moments of the SDs.
The degrees of freedom for each SD and, thus, the range of SDs that can be modeled depend upon
the number of moments in the scheme. A triple-moment scheme, for example, effectively allows the
three parameters of the gamma distribution to vary independently, whereas a single-moment scheme
typically only allows the mass mixing ratio to vary with fixed number concentration.

The shapes or aspect ratios of hydrometeors are usually not predicted in cloud models but are
assumed, often very simply, within the microphysical parameterization scheme. An exception to this
is the bulk adaptive habit model (AHM; Harrington et al. [42] and Sulia and Kumjian [43,44]), which
explicitly predicts the evolution of ice particle aspect ratio due to depositional growth and sublimation.
For example, it is known that nonspherical ice becomes more nonspherical during depositional growth
and less nonspherical during sublimation. The aspect ratio of ice particles also changes during riming
and aggregation (Li et al. [45]). The aspect ratios of different habits of ice crystals as a function of size
are summarized by Matrosov et al. [46]. Snow aggregates and irregularly shaped ice particles are more
spherical than pristine crystals, with aspect ratios usually varying between 0.5 and 0.7 (Straka et al. [47]
and Korolev and Isaac [48]). Reasonable estimates of the aspect ratios of ice/snow particles can be
made using polarimetric radar measurements, as suggested by Matrosov et al. [49] and Matrosov [50].
The shapes and aspect ratios of melting crystals and snow are not as well-documented as those for
dry snow. It is reasonable to assume that the shape of the melting ice particle gradually changes with
increasing mass water fraction fw so that it eventually acquires the shape of the raindrop with the same
mass. The forward operators put forth in Jung et al. [51] and Ryzhkov et al. [15] suggest varying the
aspect ratio of melting snowflakes and hailstones as a linear function of fw. For raindrops, there is
a wide consensus that the relation suggested by Brandes et al. [52] is a good approximation for the
dependence of the axis ratios of raindrops on their equivolume diameters.

The distributions of hydrometeor orientations also are not specified by microphysics schemes in
NWP models and have to be defined within the PRFO. It is reasonable to assume Gaussian canting
angle distributions with a mean canting angle of 0◦ for raindrops and ice particles of oblate shapes
(Ryzhkov et al. [15]) and some non-zero width σα. For rain, assuming σα = 10◦ is a reasonable choice.
In ice and snow, σα may vary from 10◦ for pristine crystals and lightly aggregated snowflakes to
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40◦ for heavily aggregated dry snowflakes (see discussion in Ryzhkov and Zrnic [3]), Section 4.3.6).
For prolate hydrometeors, it is more appropriate to assume random orientation distributions with
some flutter angle (Melnikov and Straka [53]). As with the aspect ratio, the width of the canting
angle distribution σα for mixed-phase particles is commonly assumed to be a linear function of fw

so that the width of the distribution decreases as fw increases, as it does during the melting process
(Ryzhkov et al. [15]). Ryzhkov et al. [54] mention the possibility to retrieve the orientation parameter
σα using a combination of LDR, ZDR, and %hv (their Equation (12)).

Our theoretical simulations show that the change of the aspect ratio of ice particles from 0.5 to 0.7
leads to the decrease of KDP (in deg km−1) and ZDR (in dB) by a factor of two. A similar reduction of
KDP and ZDR occurs if the parameter σα increases from 10◦ to 30◦.

Formulas for the dielectric constant ε of fresh water and solid ice as functions of radar wavelength
and temperature can be found in Ray [55]. The mixing formulas for ε for dry and wet snow, graupel,
and hail composed of air, ice, and water are summarized in Ryzhkov et al. [15] and Ryzhkov and
Zrnic [3]. As mentioned before, there is an inherent uncertainty associated with the use of Maxwell
Garnett mixing formulas, because the way water is distributed within the melting particles affects
the value of their dielectric constant. Fabry and Szyrmer [39] describe at least six different models of
such distribution.

The angular moments characterizing the orientations of atmospheric particles are determined
by the antenna elevation angle β (see Figure 1) and the width of the canting angle distribution σα.
The corresponding formulas for different particle orientation types can be found in Ryzhkov [9],
Ryzhkov et al. [15], and Ryzhkov and Zrnic [3] (their appendix B).

If the distribution of particle orientations is independent of the distributions of size and shape,
then the polarimetric radar variables (e.g., ZH,V, ZDR, KDP, LDR, Ah, ADP, and %hv) can be estimated
by integrating (or averaging) the products of the scattering amplitudes sa,b

(0,π) and angular moments
A1–A5 over the SD, as specified in the Appendix A (Equations (A1)–(A8)) where the angular moments
are defined via (A10). In the Rayleigh approximation, the scattering amplitudes are given by (3)–(5),
whereas lookup tables or scattering databases should be utilized for resonance-size particles.

The effects of attenuation and differential attenuation on ZH, ZDR, and LDR are quantified by
Equations (A11)–(A13) in the Appendix A. The observed radar variables can also be affected by
beam broadening and depolarization on propagation. The latter is caused by the cross-coupling of
horizontally and vertically polarized waves when they are simultaneously transmitted (and received).
The associated biases can be significant and difficult to quantify (Ryzhkov [56], Ryzhkov and Zrnic [57],
and Hubbert et al. [58]). None of the existing PRFOs fully account for such artifacts in the radar
observations, although some of them attempt to capture the impact of beam broadening on ZH.

Over the past decade, several PRFOs have been developed. One of the first ones was designed
by Pfeifer et al. [59] for the European COnsortium for Small-scale MOdeling (COSMO) model
(Baldauf et al. [60]). It was able to simulate ZH, ZDR, and LDR for rain, dry and wet snow, and graupel
using T-matrix computations. Several assumptions were made regarding “free parameters” characterizing
the shape and orientation of hydrometeors which are not predicted by COSMO. The shape of raindrops
was assumed to follow the dependence on diameters specified by Andsager et al. [61] and the aspect ratio
of ice particles varied from 0.3 to 1.0. A problematic feature of the Pfeifer et al. PRFO is its unrealistic
assumptions about the mean canting angle of hydrometeors, which were allowed to vary from 0 to 40◦ to
produce sufficiently large values of LDR. Such an assumption is apparently inconsistent with polarimetric
observations (e.g., Ryzhkov et al. [62]), and all subsequent PRFOs imply a zero mean canting angle, with
the only exception in the case of ice crystals oriented by strong electric fields (Ryzhkov and Zrnic [57]).

In the United States, Jung et al. [51] proposed another PRFO coupled with the advanced regional
prediction system (ARPS) (Xue et al. [63]) that additionally computes KDP and %hv. This PRFO was
further refined by Dawson et al. [64] and Snyder et al. [65,66]. This PRFO makes more realistic
assumptions about particle orientations. The mean canting angle of hydrometeors is set to 0◦, raindrops
are assumed equioriented, and the width of the canting angle distribution σα for ice decreases
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from 20◦ for dry snow and 60◦ for dry hail to 0◦ depending on the fractional water content fw for
melting snow and hail. The Brandes et al. [52] relation for the aspect ratio of raindrops is used,
and a fixed aspect ratio of 0.75 is assumed for snow and hail. Since the fractional water content fw

is not determined/predicted in models such as ARPS that use popular bulk microphysics schemes,
Jung et al. [51] and Dawson et al. [64] suggested creating artificial classes of “melting snow” and
“melting hail” by “borrowing” some amount of water and ice from the pure liquid and ice categories in
the model and mixing them so that the value of fw is determined from the ratio of liquid and ice water
contents. In the Jung et al. [51] PRFO, a fixed density of 0.1 g cm−3 is assumed for dry snow, and the
density of wet snow increases from 0.1 to 1.0 g cm−3 proportional to fw as snowflakes melt.

Ryzhkov et al. [15] developed an advanced PRFO for the Hebrew University cloud model (HUCM)
with spectral microphysics (Khain and Pinsky [67]). This operator can also be used with cloud models
employing bulk microphysics. It parameterizes the aspect ratio and the canting angle distribution
width of mixed-phase hydrometeors as functions of fw, which is explicitly determined by the spectral
microphysics scheme. Additionally, the operator utilizes a two-layer version of the T-matrix code and
modified Rayleigh formulas for ice-coated freezing drops and water-coated snow, graupel, and hail,
though the more common T-matrix code that assumes a homogeneous mixture can be used for any of
these species as well. The radar variables are expressed via multiple angular moments characterizing
particle orientations, and the effects of attenuation/differential attenuation are taken into account (see
Appendix A).

Efforts to develop additional PRFOs have renewed over the past several years (Augros et al. [68],
Wolfensberger and Berne [69], Matsui et al. [70], Mendrok et al. [71], and Oue et al. [72]). Augros et al. [68]
created a PRFO for the French nonhydrostatic mesoscale research NWP model Meso-NH (Lafore et al. [73]).
This operator simulates the whole set of polarimetric radar variables for rain, dry snow, and dry and wet
graupel at the S, C, and X bands. Beam broadening and bending are accounted for along with attenuation
in rain. Wolfensberger and Berne [69] developed an advanced PRFO for COSMO, and Mendrok et al. [71]
reported on the progress to add polarimetric capabilities to the Efficient Modular Volume scanning RADar
Operator (EMVORADO; Zheng et al. [74]) in COSMO and the ICOsahedral Nonhydrostatic model (ICON).
These PRFOs include the effects of beam broadening, with the latter two computing Doppler radar
variables (including the Doppler spectrum in Wolfensberger and Berne [69]). Similar to Jung et al. [51] and
Dawson et al. [64], the Wolfensberger and Berne forward operator generates an artificial class of melting
particles. The effects of beam broadening, attenuation, and atmospheric refraction are explicitly treated.
A distinctive feature of this operator is that the aspect ratios and orientation parameters of snow and
graupel particles are formulated as functions of particle size based on the results of massive observations
with a multi-angle snowflake camera (MASC).

Matsui et al. [70] introduced a synthetic polarimetric radar simulator and retrieval package,
POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS), which generates polarimetric
radar variables as well as vertical Doppler velocity, rain rate, and a synthetic hydrometeor classification
product retrieved from cloud-resolving model output. The Cloud Resolving Model Radar Simulator
(CR-SIM) (Oue et al. [72]) produces polarimetric and Doppler radar moment variables and lidar
observables for a wide range of radar and optical frequencies. In its polarimetric radar component,
CR-SIM utilizes the set of formulas and assumptions from the PRFO of Ryzhkov et al. [15].

2.3. Utilization of the Forward Operators with Bulk and Spectral Bin Models

2.3.1. Spectral Bin Models

The coupling of PRFOs with cloud models of varying complexity that use spectral bin microphysics,
including the HUCM and a number of Lagrangian 1D or 2D cloud models, has aided the identification
of “polarimetric fingerprints” of various microphysical processes and has been useful for finding
corresponding deficiencies in microphysical parameterization schemes. One of the most ubiquitous
polarimetric signatures observed in deep moist convection is the ZDR column. ZDR columns are vertical
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protrusions of nontrivially positive ZDR (i.e., exceeding 1 dB) above the environmental 0 ◦C level and
indicate the presence of wet ice particles and large supercooled raindrops lofted in updrafts. In Figure 2,
a ZDR column is displayed for a tornadic storm in Oklahoma that also produced large hail, which is
marked by very high Z and near-zero ZDR down to the surface (at a range of 110 km from the radar).
The ZDR column stretching up to 8 km in height is observed in near proximity of the hail core and is
associated with a strong updraft and bounded weak echo region (BWER).
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Figure 2. Composite Range-Height Indicator (RHI) of Z and ZDR measured in a tornadic storm in
Oklahoma on 29 May 2004. Overlaid are Z contours drawn every 5 dBZ.

Initially, the HUCM was not able to simulate realistic ZDR columns when applying the PRFO of
Ryzhkov et al. [15], because the mechanism of slow freezing of lofted raindrops was missing. This is
illustrated in Figure 3 where simulated and observed fields of Z and ZDR are shown in a vertical
cross-section of an Oklahoma hailstorm. Indeed, the simulated ZDR column is 2 km shorter than the
observed one.

After a slow-freezing process was implemented in the HUCM model, much more realistic and
taller ZDR columns were reproduced (Kumjian et al. [75], Snyder et al. [76], and Ilotoviz et al. [77]).
The evolution of vertical cross-sections of ZH, ZDR, and vertical air velocity w during the mature stage of
a simulated hail-bearing storm after this change was made are illustrated in Figure 4. The evolution and
cyclic growth and demise of the ZDR columns, and their direct association with vertical air velocities,
are consistent with radar observations. Cumulative histograms of the height of ZDR columns above the
0 ◦C isotherm from idealized HUCM simulations and observations from tornadic storms in Oklahoma
on 19 May 2013 are shown in Figure 5. While differences between the observed and simulated cases
preclude a more direct comparison, the overall climatology and distribution of simulated ZDR columns
appear to be in good agreement with those observed, lending confidence to the HUCM’s underlying
microphysics responsible for ZDR column development and evolution.
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Figure 3. Fields of (left) simulated and (right) observed (top) Z and (bottom) ZDR in the vertical
cross-section of an Oklahoma hailstorm on 2 February 2009 at the moment of its maximal development.
Overlaid are 40- and 50-dBZ reflectivity contours. The white oval in the bottom right panel encloses
the observed ZDR column. Note that the horizontal distances in the model and radar coordinates are
different. From Ryzhkov et al. [15].

The anatomy of ZDR columns simulated with the HUCM is described in the study of Kumjian et al. [75],
whereas Ilotoviz et al. [77] demonstrated a strong correlation between the height of the ZDR column above
the freezing level and the updraft speed (Figure 6). Moreover, Ilotoviz et al. [77] also showed that the
height and intensity of ZDR columns depend on the cloud condensation nuclei (CCN) concentration near
the surface.

Another example of how PRFOs helped improve the microphysical parameterization in the
HUCM was the implementation of spontaneous raindrop breakup to supplement collision-induced
breakup, which resulted in a reduction of the number of extremely large raindrops and an associated
decrease in simulated ZDR values in much better agreement with the observations (Ilotoviz et al. [77]).
In Figure 7, the results of simulations of Z and ZDR in a hailstorm are compared if spontaneous breakup
is turned on (left panels) and off (right panels). Abnormally high values of Z and ZDR are obtained
in the absence of spontaneous breakup. Ilotoviz et al. [77] also checked the consistency of the model
values of Z and ZDR at different altitudes in a simulated hailstorm with a large statistical dataset
containing polarimetric radar data collected in a multitude of hailstorms across the US with more
than 3000 hail reports (Ortega et al. [78]). Distributions of Z and ZDR in different height intervals for
different hail size categories at the surface simulated by HUCM (for a single storm) and reported from
observations are displayed in Figure 8. It is obvious that the HUCM is able to reproduce quite realistic
values of Z and ZDR at various height levels in a hailstorm.
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Figure 4. Evolution of vertical cross-sections of ZH (left panels) and ZDR (right panels) throughout
the life cycle of a hailstorm simulated using the Hebrew University cloud model (HUCM). Vertical
velocity values of 10 m s−1 and 30 m s−1 are contoured in black, and the time within the simulation
is in the upper-left corner of each panel. The polarimetric emulator used to produce these images is
described in Ryzhkov et al. [15]. White letters “A”, “B”, and “C” highlight three ZDR columns. From
Ryzhkov and Zrnic [3]. Used with permission from Springer.
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Figure 6. Scatterplots of the 1-dB ZDR contour height above the 0 ◦C level (km) versus the updraft
speed (m s−1) at that height. Different concentrations of CCN are marked by different colors:
blue—100 cm−3, green—400 cm−3, brown—1000 cm−3, red—2000 cm−3, and black—3000 cm−3.
Adapted from Ilotoviz et al. [77]. Used with permission from American Meteorological Society.
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Figure 8. Distributions of Z and ZDR at different height intervals for different surface hail size categories
from the HUCM (left panels) and radar observations (right panels). The short, thick vertical lines mark
the median values of the distributions. The left and right boundaries of the colored boxes correspond
to the 25th and 75th percentiles of the distributions. Radar variables are calculated at the S band.
The definition of height intervals/classes is in [77,78]. From Ilotoviz et al. [77]. Used with permission
from American Meteorological Society.

In a similar study, Kumjian and Prat [79] used the column spectral bin model of warm rain from
Prat and Barros [80] and the PRFO from Ryzhkov et al. [15] to reveal problems in the model treatment
of raindrop coalescence and breakup through comparison with real polarimetric radar observations.
Similar approaches employing the PRFO of Jung et al. [51] for the evaluation of existing microphysical
parameterization schemes were used by Johnson et al. [81,82] for idealized supercells and an observed
typhoon, respectively.

The use of simple Lagrangian spectral bin models combined with PRFOs has also proven to be very
efficient for studying the mechanisms behind the “polarimetric fingerprints” of individual microphysical
processes. These include models for size sorting (Kumjian and Ryzhkov [83,84]), evaporation (Kumjian
and Ryzhkov [85]), freezing of raindrops in convective updrafts (Kumjian et al. [86]), melting of hail
(Ryzhkov et al. [22]), and melting of snow (Carlin and Ryzhkov [87]). As an example, Kumjian and
Ryzhkov [84] adequately reproduced the ubiquitous polarimetric signatures of size sorting, manifested
as enhanced ZDR combined with low ZH and KDP in rain, using an idealized 2D bin model of raindrop
fallout. The results from a model of a 2D rain shaft in the presence of vertical wind shear are illustrated
in Figure 9, where a displacement of the ZDR maximum near the surface with respect to the maxima of
ZH and KDP is reproduced and compares well with the results of observations shown in Figure 10.
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The observed fields of Z and ZDR beneath the melting layer are qualitatively similar to the model rain
shaft in Figure 9. Namely, the highest ZDR is located at the leading edge of the shaft along the gradient
in Z (located at about 29 km in range and enclosed in the black oval), whereas the higher Z is offset and
coincident with lower ZDR (30–31 km in range).Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 35 
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simulate mass mixing ratios, total number concentrations, and/or reflectivity for pure liquid or pure 
ice hydrometeors; and do not explicitly treat mixed-phase hydrometeors such as melting hail or 
snow that produce the most notable and pronounced polarimetric radar signatures. As mentioned 
in Section 2.2, Jung et al. [51], Dawson et al. [64], and Wolfensberer and Berne [69] suggested 
creating artificial classes of mixed-phase particles in order to address this deficiency. 

With such modifications, several authors have had success in reproducing realistic 
polarimetric signatures in areas of mixed-phase precipitation using outputs of cloud models with 
double- or triple-moment bulk microphysics. Jung et al. [88] simulated a supercell storm using the 
ARPS model with single- and double-moment microphysics. The PRFO described by Jung et al. [51] 

Figure 9. (Left panel) Schematic of the two-dimensional wind shear model configuration: (left)
storm-relative wind profile and (right) the domain and resulting Z distribution (shaded; dBZ).
The “cloud” rainwater mixing ratio q (g/kg) profile is shown above the domain. (Right panels) Results
from the two-dimensional wind shear model using the bin formulation: panels show the 2D fields of (a)
ZH, (b) ZDR, (c) KDP, and (d) ρhv. Overlaid on (a) are the ZDR contours (0.5–2.5 dB in 0.5-dB increments);
(b)–(d) have Z contours (10–40 dBZ in 10-dBZ increments) overlaid. Adapted from Kumjian and
Ryzhkov [84].
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Figure 10. RHI scan of Z and ZDR taken at 0404 UTC 22 June 2011 from the Bonn X-band polarimetric radar.
Adapted from Kumjian and Ryzhkov [84]. Used with permission from American Meteorological Society.

2.3.2. Bulk Models

Most operational NWP models utilize bulk microphysical parameterizations, which commonly
prescribe a priori exponential or gamma-size distributions of particles with different habits; simulate
mass mixing ratios, total number concentrations, and/or reflectivity for pure liquid or pure ice
hydrometeors; and do not explicitly treat mixed-phase hydrometeors such as melting hail or snow that
produce the most notable and pronounced polarimetric radar signatures. As mentioned in Section 2.2,
Jung et al. [51], Dawson et al. [64], and Wolfensberer and Berne [69] suggested creating artificial classes
of mixed-phase particles in order to address this deficiency.

With such modifications, several authors have had success in reproducing realistic polarimetric
signatures in areas of mixed-phase precipitation using outputs of cloud models with double- or
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triple-moment bulk microphysics. Jung et al. [88] simulated a supercell storm using the ARPS model
with single- and double-moment microphysics. The PRFO described by Jung et al. [51] was applied to
examine its ability to simulate polarimetric signatures reported in observational studies (e.g., Kumjian
and Ryzhkov [89]). The authors compared the simulations and found that certain signatures, such
as the ZDR arc and midlevel ZDR and ρhv rings, cannot be reproduced when using single-moment
microphysics. Snyder et al. [65,66] used the same model with the triple-moment microphysics scheme
of Milbrandt and Yau [41] and a similar polarimetric operator to reproduce realistic-looking ZDR and
KDP columns, as well as the ZDR and ρhv midlevel rings enclosing convective updrafts in simulated
supercells. The results of simulations of ZH, ZDR, ρhv, and w at a height of 4.6 km illustrated in Figure 11
are generally consistent with radar observations of a typical supercell storm (panel c in Figure 11 [89]).
The ZDR arc signature, an important attribute of supercell storms resulting from size sorting, was also
successfully reproduced in the study of Dawson et al. [64] (see Figure 12).
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Figure 11. The ρhv and ZDR rings simulated in a supercell storm at ~4.6 km above ground level (AGL), as
shown by (a) ρhv (colors) and w (contoured every 10 m s−1), (b) Z (dBZ; colors) and ZDR (dB; contoured
every 1 dB), and (c) a typical midlevel ρhv ring observed in the supercell. The polarimetric variables
are calculated for the X band. Adapted from Snyder et al. [65,66] and Kumjian and Ryzhkov [89]. Used
with permission from American Meteorological Society.
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Figure 12. Observed (left panels a,c) and simulated (right panels b,d) fields of Z and ZDR near the surface
of the 1 June 2008 Oklahoma nontornadic supercell. Overlaid are the reflectivity contours in 20-dBZ
increments. The ZDR arc in the southern part of the forward flank downdraft is enclosed in the black
oval. Adapted from Dawson et al. [64]. Used with permission from American Meteorological Society.

3. Microphysical Retrievals

Multi-parameter measurements available from dual-polarization radars provide ample opportunities
for the retrieval of key microphysical variables: rain or snow rates, liquid or ice water contents, and particle
size distribution parameters such as the mean volume diameter or number concentration. The latest
methodologies for polarimetric microphysical retrievals are described in the monograph of Ryzhkov and
Zrnic [3] (Chapter 11). A brief summary of those is presented herein.

3.1. Radar Microphysical Retrievals in Rain

Rain microphysical retrievals include the determination of the rain rate R, liquid water content
(LWC), mean volume diameter (Dm), and total concentration of raindrops (Nt). For the rain rate
estimation, a novel method based on the combination of Ah and KDP was suggested by Ryzhkov et al. [90]
and proved to be the best rainfall estimation algorithm at the S band based on the results of a large-scale
evaluation of different QPE techniques using the operational network of WSR-88D radars in the United
States (Wang et al. [91], Cocks et al. [92], and Zhang et al. [93]). The new R(Ah, KDP) algorithm
outperforms the one of Giangrande and Ryzhkov [94] currently used on polarimetric WSR-88Ds and
the Q3RAD technique previously implemented on the multi-radar multi-sensor (MRMS) platform
(Zhang et al. [95]).

Prior to the introduction of polarimetric radars, LWC was estimated using only ZH. Such estimates
are notoriously inaccurate and sensitive to the variability of the raindrop size distribution (DSD;
see Figure 13a). Much better accuracy is achieved if either a combination of ZH and ZDR or Ah is
used (Figure 13b,c). The scatterplots in Figure 13 were obtained using the following radar relations
optimized for DSDs measured in Oklahoma at the S band:

LWC(Zh) = 1.74× 10−3Z0.64
h (6)

LWC(Zh, ZDR) = 1.38× 10−3Zh × 10(−2.43ZDR+1.12Z2
DR−0.176Z3

DR) (7)

LWC(Ah) = 115A0.92
h (8)
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where LWC is expressed in g m−3, Zh = 100.1ZH(dBZ) is in mm6 m−3, and ZDR is in dB. The advantage
of using the LWC(Ah) relation is that it is least-sensitive to DSD variability and is immune to the biases
of ZH and ZDR measurements. It can be shown that, similar to the R(Ah) algorithm, the dependence of
Ah on air temperature in the LWC(Ah) relation can be ignored to a first approximation (see discussion
in Chapter 10 in Ryzhkov and Zrnic [3]]. Our analysis of the errors in the radar estimates of LWC
using a large disdrometer dataset in Oklahoma shows that the fractional standard deviation (FSD) of
the LWC(Z,ZDR) estimate is about 35% for LWC varying from 0.1 to 1.0 g m−3. The LWC(Ah) relation
yields FSD about two times lower—17%. A table listing radar relations for LWC at the S, C, and X
bands can be found in Ryzhkov and Zrnic [3] (Chapter 11).
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Figure 13. Scatterplots of the liquid water content (LWC) measured by the 2D video disdrometer in
Oklahoma versus its estimates from (a) LWC(Z), (b) LWC(Z,ZDR), and (c) LWC(A) radar relations.

Owing to the monotonic relation between raindrop size and oblateness, the mean volume diameter
Dm of raindrops, defined as the ratio of the 4th and 3rd moments of the DSD, or median volume
diameter D0 (which is very close to Dm) are traditionally estimated from ZDR. A summary of various
proposed D0(ZDR) relations is provided in Chapter 11 of Ryzhkov and Zrnic [3] for different radar
wavelengths. Herein, we present two popular D0(ZDR) relations often used at the S band:

D0 = 0.171Z3
DR − 0.725Z2

DR + 1.48ZDR + 0.717 (9)

suggested by Brandes et al. [96] and

D0 = 0.0436Z3
DR − 0.216Z2

DR + 1.08ZDR + 0.659 (10)

from Cao et al. [97]. In Equations (9) and (10), D0 is in mm, and ZDR is in dB. The relations (9)–(10)
were obtained using disdrometer measurements in Florida and Oklahoma, respectively. These two
estimates are relatively close, and any of them can be utilized interchangeably. However, all rain
retrieval relations may need some minor modifications, depending on the climate region. It would
be a good practice to check the validity of the suggested relations in a concrete geographical region
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where sizeable DSD datasets exist and modify them if needed. The Nt (in units of number per L) can
be estimated from the combination of Z and ZDR as

log(Nt) = −2.37 + 0.1Z− 2.89ZDR + 1.28Z2
DR − 0.213Z3

DR (11)

where Z is expressed in dBZ, and ZDR is in dB.
The standard deviation of the estimates D0(ZDR) in (9) and (10) increases with D0, but the fractional

standard deviation (FSD) is constant at about 10%. The standard deviation of the log(Nt) estimate
is about 0.3 for the majority of DSDs and tends to be larger for very high (log(Nt) > 0) and very low
(log(Nt) < −1) raindrop concentrations.

The described DSD retrieval is deterministic and does not consider the uncertainty caused by
measurement/model errors. A statistical approach has been suggested in several recent studies based
on the Bayesian theory (e.g., Cao et al. [98]) or an inverse model (Wen et al. [99]).

3.2. Radar Microphysical Retrievals in Ice and Snow

Recently, substantial progress has been made in microphysical retrievals of ice and snow from
polarimetric radar. The following polarimetric relations for the estimation of the ice water content
(IWC), Dm, and Nt for ice particles have been suggested by Ryzhkov et al. [54] and Ryzhkov and
Zrnic [3]:

IWC = 4.0× 10−3 KDPλ

1−Z−1
dr

(12)

Dm = −0.1 + 2.0
( ZDP

KDPλ

)1/2
(13)

log(Nt) = 0.1ZH(dBZ) − 2 log
( ZDP

KDPλ

)
− 1.11 (14)

where ZDP = Zh − Zv is the reflectivity difference in mm6 m−3, Zdr is the differential reflectivity in
linear scale, and λ is the radar wavelength in mm. In (12)–(14), IWC is expressed in g m−3, Dm is in
mm, and Nt is in 1/L. Equations (12)–(14) were derived assuming that the bulk density of ice or snow
ρs is inversely proportional to the particle’s equivolume diameter (e.g., Brandes et al. [100]):

ρs = αD−1 (15)

where ρs is expressed in g cm−3, and D is in mm. The factor α is proportional to the degree of riming
of the snowflake.

Twelve different types of ice habits have been considered in the simulations, including snow
aggregates, dendrites, hexagonal plates, solid thick plates, elementary needles, solid bullets, hollow
bullets, solid columns, and hollow columns of various shapes. The aspect ratios of the aggregates were
allowed to vary between 0.4 and 0.9, and those of pristine ice were determined as in Matrosov et al. [46].
Computations of the microphysical parameters and polarimetric radar variables were performed for a
multitude of gamma size distributions:

N(D) = N0Dµ exp[−(4 + µ)/Dm] (16)

and the width of the canting angle distribution σα varying from 10◦ to 40◦.
The ratio ZDP/KDP in Equations (12)–(14) is very robust with respect to the variability of the

particles’ aspect ratios and orientations, because these two factors affect ZDP and KDP similarly, and,
therefore, the ratio remains almost intact (Ryzhkov et al. [101]). Some results of simulations are
presented in Figure 14 as Dm versus [ZDP/(KDPλ)]1/2 dependencies for all ice habits. Remarkably, the
curves for all 12 habits corresponding to exponential size distributions are practically indistinguishable.
Although the estimates from Equations (12)–(14) are almost insensitive to the variability of the shapes
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and orientations of ice particles, they are somewhat sensitive to the variability of the degree of riming
of snow and changes of the shape parameter µ of the size distributions (Ryzhkov et al. [54,101] and
Ryzhkov and Zrnic [3]). Theoretical simulations show that the fractional standard deviation (FSD) of the
IWC estimates is within 20% if −1 < µ < 1, and IWC tends to be overestimated for µ < −1. The estimate
(12) for the IWC is almost insensitive to the variability of α (or degree of riming). Equations (13) and
(14) for Dm and Nt were optimized for α = 0.2. For a given α, the accuracy of the Dm estimate is within
20%, but some adjustment of the Eq (13) is needed depending on the degree of riming. The accuracy
of the log(Nt) estimate (14) is dependent on the accuracy of the Dm retrieval and may vary from 0.7
to 1.0 (in log units) if Dm is estimated with an accuracy of 20%. One of the primary advantages of
using KDP instead of ZH for ice retrievals is that KDP is proportional to the 1st moment of the SD of
ice particles, whereas ZH is proportional to its 4th moment (assuming an inverse dependence of the
density of snowflakes on their size) and is therefore heavily weighted by the largest ice particles.
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Figure 14. Dependence of the mean volume diameter (Dm) of ice particles on [ZDP/(KDPλ)]1/2 for
12 various ice habits for exponential size distribution (µ = 0) and the factor α in (15) equal to 0.2. From
Ryzhkov and Zrnic [3]. Used with permission from Springer.

Reliable retrievals of size distribution parameters can be made in areas where KDP and ZDR are not
close to zero. Therefore, the most accurate retrievals in the cold parts of stratiform clouds are usually
produced within the dendritic growth layer (DGL) centered at the −15 ◦C isotherm where KDP and
ZDR reach their maxima. This is important, because the bulk of snow precipitation is formed within the
DGL (e.g., Hobbs and Rangno [102]). To ensure robust estimates of the microphysical variables from
polarimetric measurements, KDP and ZDR have to be measured with sufficient accuracy. This dictates
the need to do quite aggressive spatial averaging of KDP to reduce statistical errors of its estimate and
to remove the possible miscalibration bias of ZDR [3].

The validity of Equation (12) was evaluated in the observational study of Nguyen et al. [103]
using X-band polarimetric radar measurements and in situ observations onboard research aircraft
flying through tropical clouds. A summary of seven research flights shows the average bias of the
polarimetrically retrieved IWC to be 0.045 g m−3 and the rms error to be 0.52 g m−3 for IWC varying
from 0.3 to 3 g m−3.

Note that Equations (12)–(14) have been derived in the Rayleigh approximation and are not valid
for graupel and hail, because such particles tend to be larger in size, and their density is not inversely
proportional to their equivolume diameter. These formulas may also produce erroneous results for
mixtures of different habits of small ice with comparable contributions to ZH and KDP. This may
happen in the DGL usually centered at −15 ◦C where dendrites or hexagonal plates locally grow
or in the temperature interval centered at −6◦ with favorable conditions for needle growth. In the
DGL, these equations can be safely used if KDP is high and ZDR is low which means that a mixture is
dominated by quasi-spherical particles (with aspect ratios 0.5–0.7) falling from higher altitudes in the
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cloud with a cold cloud top rather than by strongly anisotropic dendrites and plates with much lower
aspect ratios which rapidly grow in the DGL (Griffin et al. [104]).

Retrievals for LWC and IWC in rain mixed with graupel/hail present additional complications,
as ZH and ZDR can be completely dominated by even small IWC. Some ideas for LWC and IWC
retrievals in mixtures of rain and graupel/hail using ZDR and KDP were proposed by Carlin et al. [105]
based on simulations of deep convective storms using a one-dimensional model of melting hail
(Ryzhkov et al. [22]) and the two-dimensional Hebrew University cloud model (HUCM) coupled to a
PRFO (Ryzhkov et al. [15]).

3.3. Illustration of the Polarimetric Microphysical Retrievals for Hurricane Harvey

Polarimetric microphysical retrievals in rain and ice have been used to investigate the microphysical
structure of Hurricane Harvey (2017) as it made landfall on the Texas coast on 25 August 2017. The eyewalls
of hurricanes and their outer rain bands have very different microphysical characteristics and the potential
for flash flooding. Hurricane Harvey exemplifies this difference well. The composite vertical profiles
of LWC/IWC, Dm, and Nt retrieved from columnar vertical profiles (CVP) (Murphy et al. [106]) of
polarimetric radar variables have been generated in the eyewall area of the hurricane and its outer rain
bands (Hu et al. [107]). The centers of the CVP columns are shown in the PPIs of ZH in Figure 15.
The eyewall region was better sampled by the KCRP WSR-88D radar in Corpus Christi (left panel in
Figure 15), whereas the outer rain band was better visible from the perspective of the KHGX WSR-88D
radar in Houston (right panel in Figure 15). The corresponding CVPs in a height versus time format are
shown in Figures 16 and 17.

A comparison of the two CVPs in Figures 16 and 17 indicates that the eyewall region and its
periphery marked by the white box in the left panel of Figure 15 is characterized by a high concentration
of very small ice particles aloft with ZH generally less than 20 dBZ above the melting layer. Vertical
gradients of Z, LWC, and Dm are obviously higher in rain below the melting layer in the eyewall area
than in the outer rain bands, which tells that the bulk of precipitation in the eyewall is formed as
“warm” rain, and ice aloft makes a relatively small contribution to the rainfall at the surface, although
the IWC aloft is high. It is the warm rain mechanism that is primarily responsible for precipitation in
the eyewall.
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Figure 16. Columnar vertical profiles (CVPs) of ZH, IWC/LWC, Dm, and Nt in the eyewall of hurricane
Harvey from the perspective of the KCRP WSR-88D radar in Corpus Christi. The location of the column
base is shown with the white rectangle in Figure 7 (left panel). Overlaid are contours of ZH every
10 dBZ.
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Hurricane Harvey from the perspective of the KHGX WSR-88D radar in Houston. The location of 
the column base is shown with the white rectangle in Figure 15 (right panel). Overlaid are contours 
of ZH every 10 dBZ. 

4. Thermodynamic Retrievals 

Figure 17. Columnar vertical profiles (CVPs) of ZH, IWC/LWC, Dm, and Nt in the outer rain band of
Hurricane Harvey from the perspective of the KHGX WSR-88D radar in Houston. The location of the
column base is shown with the white rectangle in Figure 15 (right panel). Overlaid are contours of ZH

every 10 dBZ.

The outer rain band is characterized by noticeably higher ZH in ice above the melting layer, larger
ice particles, and lower Nt. The relative contribution of “warm” rain to the surface precipitation is
lower, because vertical gradients of the polarimetric variables, IWC, and Dm are smaller compared
to the eyewall region. Figure 17 shows that the LWC even decreases from the melting layer down
to the surface. This means that a good portion of precipitation at the surface is from the melting
of ice. The coexistence of graupel-size ice, ice crystals, and supercooled water lofted in stronger
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updrafts facilitates electric charge separation and significant lightning discharges in the outer rain
band. In contrast, no lightning was reported in the eyewall region of Hurricane Harvey.

The combination of warm rain generated below the melting layer and rain resulting from the
melting of ice originating in stronger convective updrafts makes an outer rain band of tropical cyclones
more efficient at producing heavy rain compared to the eyewall. Extremely heavy rain from the stalled
external rain bands was responsible for most of the flooding during Harvey.

4. Thermodynamic Retrievals

Hydrometeors undergoing a phase transition exchange latent heat with the environment, and these
diabatic processes are a fundamental driver of atmospheric motion across a range of spatial and
temporal scales. Condensation of water vapor in convective updrafts releases latent heat and drives
convection through increases in buoyancy. Riming/accretion and refreezing represent another source
of latent heat release that warms the environment. Evaporation and sublimation cool and moisten
the environment, whereas the depositional growth of ice results in warming and drying. Melting of
hydrometeors also causes cooling of the environment and, combined with evaporation and precipitation
loading, may produce strong downdrafts associated with “cold pools” and microbursts. Polarimetric
radar variables are very sensitive to the phase transitions of hydrometeors and, thus, can be very
useful for thermodynamic retrievals in addition to the microphysical retrievals described in the
previous section.

Carlin et al. [108] and Carlin and Ryzhkov [87] suggested a new paradigm of using polarimetric
radar data for thermodynamic retrievals of warming and cooling rates associated with latent heat
release and absorption. The rate of change of the environmental temperature due to latent heating can
be described by (Grim et al. [109]):

dT
dt = 1

cpρa

{
Ls

∫ dmi,subl(D)

dt N(D)dD + Lv
∫ dmw,evap(D)

dt N(D)dD+

L f
∫ ka(T−Tp)

dQ
dmi,melt(D)

dt N(D)dD
} (17)

where N(D) is the size distribution of mixed-phase particles; dmi,subl/dt and dmi,melt/dt are the rates of
ice loss due to sublimation and melting; dmw,evap/dt is the rate of water mass loss due to evaporation;
and Ls, Lv, and Lf are latent heat of sublimation, vaporization, and fusion. A similar equation can be
written for the rate of change of the environmental water vapor mixing ratio qv:

dqv

dt
= −

1
ρa,d

∫ [
dmi,subl(D)

dt
+

dmw,evap(D)

dt

]
N(D)dD (18)

In Equations (17)–(18), T is the air temperature, Tp is the temperature of the particle, cp is the
specific heat of the air, ρa is the air density, ρa,d is the dry air density, ka is the thermal diffusivity
of air, and dQ is the heat available for melting. The rates dm/dt are determined by environmental
thermodynamic variables, whereas the size distributions of pure rain and pure ice can be retrieved
from polarimetric radar measurements using Equations (6)–(14) and assuming µ = 0. These can be
used directly to estimate the warming/cooling rates dT/dt and moistening/drying rates dqv/dt using
Equations (17) and (18). Conceptually, if reliable SD retrievals from radar measurements are not
possible through the full depth of the cloud (e.g., due to a muted polarimetric signature in regions of
intense aggregation), SDs obtained in regions of reliable retrievals can instead be used to initialize 1D
Lagrangian cloud models to evolve the SD in less-reliable regions. An example of such an approach is
the analytical model of depositional growth and the aggregation of snowflakes of Passarelli [110] and
Mitchell [111], which requires an initial intercept and slope parameter of the particle size distributions
to evolve downward that could be derived from radar. In practice, quantifying the uncertainty of the
SD profile obtained this way will require estimates of the uncertainty associated with both the initial
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SD retrieved from radar and the model used to evolve the SD downward, which should be a focus of
future studies.

Diabatic warming due to the condensation of water vapor in convective updrafts is a primary
driving force of deep convection. Unfortunately, it is hard to capture the condensation process directly
with a radar because of the very small size of cloud water droplets, which are usually invisible to the
radar at commonly used precipitation radar wavelengths. However, warming due to condensation in
deep moist convections can be better quantified with polarimetric radar markers, such as ZDR column
height, compared to more commonly used metrics such as ZH or the rain rate (also estimated from
ZH). Such an approach is exemplified by (though not limited to) the so-called “SLH” latent heating
retrieval method described in Shige et al. [112,113]. In these approaches, convection-resolving models
are coupled to radar operators to calculate reflectivity and run over a long period of time to generate
a lookup table of mean vertical profiles of latent heating indexed by a radar observable such as a
10-dBZ height (e.g., see Figure 5 of [112]). These tables are then used to derive the vertical profiles of
latent heating from observed reflectivity data. Such lookup table approaches have proved popular and
continue to be developed and refined (e.g., Ahmed et al. [114]).

Our simulations of deep convective storms using the HUCM coupled with a polarimetric forward
radar operator show that using the height of the 1-dB ZDR surface above the freezing level is a much
better index of the vertical warming/cooling profiles than any Z-related parameter. This is illustrated
in Figure 18, where these profiles are displayed as functions of the height of the 10-dBZ surface of ZH

and 1-dB surface of ZDR in a deep hail-bearing convective storm (top panels a and b). It is obvious
that the vertical cross-section of latent heating retrieved using the ZDR-based index (panel e) is in
much better agreement with the “true” modeled distribution of latent heating (panel c) than the one
retrieved using the ZH-based index (panel d). While the exact values of heating simulated in the
lookup table shown in Figure 18b are expected to be somewhat sensitive to the model parameters used
in the simulation (e.g., the environment, CCN, etc.), the correspondence between the latent-heating
rate and ZDR column height overall appears robust and is in agreement with the results presented in
Figure 6, as the latent-heating rate and w are inherently related.

Carlin et al. [108] demonstrated that the use of ZDR columns as proxies for convective updrafts
has apparent advantages for radar data assimilation compared to the traditional utilization of ZH.
One common technique of reflectivity data assimilation is using a cloud analysis, which inserts
temperature and moisture increments, as well as hydrometeors deduced from ZH via empirical
relations, to induce and sustain updraft circulations. In the study of Carlin et al. [108], the advanced
regional prediction system’s (ARPS) cloud analysis was modified from its original ZH-based formulation
to provide moisture and latent heat adjustments based on ZDR columns. In this approach, observed
ZDR columns are used to isolate where positive temperature and moisture perturbations are applied,
and modest amounts of moisture are removed outside of these locations if/at/or near saturation.

In the top panel of Figure 19, 15-dBZ contours of ZH (in grey) and color-shaded (ZDR) column
depths between 2000 and 2300 UTC are displayed in 10-min intervals for the 19 May 2013 tornadic
supercells in Oklahoma. In the two bottom panels of Figure 19, the ARPS model runs after assimilation
of the ZH data only (single-pol run, left bottom panel), and the ZDR column information (dual-pol run,
right bottom panel) are compared. The analyzed updraft tracks in the dual-pol run are more coherent
and consolidated, with less spurious convection than in the single-pol run. The short-term forecast
according to the dual-pol run shows a reduction in forward speed and northward position bias of
the main updrafts, an issue encountered in many storm-scale modeling experiments. These results
suggest that polarimetric radar data can provide more targeted increments of heating with positive
forecast impacts.
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  Figure 18. (a) Mean vertical profiles of warming rates as functions of the height of the Z = 10 dBZ
level. (b) Mean vertical profiles of warming rates as functions of the height of the ZDR = 1 dB level.
(c) Vertical cross-section of the warming rate (dT/dt) obtained from the HUCM simulation of the storm
86 min after the beginning of its life cycle. (d) Vertical cross-section of the warming rate (dT/dt) if a
height of the Z = 10 dBZ level is used as a lookup table index. (e) Vertical cross-section of the warming
rate (dT/dt) if a height of the ZDR = 1 dB level is used as a lookup table index. Hatched indices indicate
profiles that were linearly interpolated due to a lack of data. All simulations were performed using
HUCM and the polarimetric radar forward operator from Ryzhkov et al. [15].

In the melting layer and below, cooling due to the melting and evaporation of hydrometeors
usually occurs. These cooling rates can be quantified using simplified 1D Lagrangian models with
spectral bin microphysics coupled with a PRFO. In our analyses, we utilized 1D Lagrangian models
for melting hail (Ryzhkov et al. [22]) and melting snow (Carlin and Ryzhkov [87]) and the PRFO of
Ryzhkov et al. [15].

A typical vertical profile of the simulated cooling rate from our 1D model [22] below the freezing
level for a hailstorm is shown in Figure 20 (right panel). This model includes melting, the soaking
of meltwater into graupel and hailstones with densities less than that of solid ice, the spontaneous
breakup of raindrops greater than 8 mm, and the shedding of meltwater into raindrops according to
Rasmussen and Heymsfield [115]. In addition to the aforementioned processes described in [22], the
sublimation of dry hail and evaporation of meltwater and shed water are included. The PRFO utilized
T-matrix scattering computations and followed all assumptions for melting hail and graupel described
in [15], including varying σα as a linear function of f w and the aspect ratio during melting according
to [115]. Since this spectral model explicitly and separately treats the melting and evaporation of
graupel, hail, and rain, their relative contributions to the cooling rate can be estimated (left panel
in Figure 20). As expected, the sublimation and melting of graupel are the dominant contributors
to the cooling rate within the first kilometer beneath the melting level, whereas the melting of hail
and evaporation of raindrops dominate the cooling rate below, with the evaporation of raindrops
originating from the complete melting of graupel and hail particles, making the largest contribution
near the surface. Combining these results with the radar operator [15], it can be shown that the vertical
gradient of KDP is well-correlated with the intensity of diabatic cooling in the first two km below the
freezing level.
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Figure 19. (Top panel) Composite remapped Z (15-dBZ contour in gray) and analyzed ZDR column
depth (color shaded as m and defined as the height of the 1-dB surface above the environmental
0 ◦C level) between 2000 and 2300 UTC in 10-min intervals for the 19 May 2013 storm in Oklahoma.
Observed tornado tracks are shown in black and grey, with grey tracks indicating observed tornadoes
that fall outside of the period of study. (Bottom panels) Composite maximum vertical velocity in
each grid column for each of the post-assimilation analyses from 2000 to 2300 UTC without using
polarimetric information (left bottom panel) and utilizing the ZDR column height (right bottom panel).
Blue contours show 30 m s−1 vertical velocity contour lines with color intensity depending on the
analysis time. Adapted from Carlin et al. [108].

The methodology for estimating cooling rates due to rain evaporation using a 1D spectral bin
model and the data collected by dual-polarization radar and micro-rain radar has been developed
and demonstrated in Xie et al. [116]. It was shown that polarimetric radar observations can be used to
estimate the evaporative cooling rates from the retrieved DSD aloft and the evaporation model.

Carlin and Ryzhkov [87] showed through simulations that the maximal cooling rates in the
melting layer (ML) of stratiform precipitation can be determined from the maximal value of KDP

within the ML. This is well-illustrated in Figure 21. The scatterplots of maximal cooling rates versus
maximal ZH show tremendous variability caused by the diversity of size distributions of ice aloft and
changes of vertical profiles of temperature and humidity within the ML (top panels in Figure 21),
whereas the almost perfect linear dependencies of the max(dT/dt) on max(KDP) (bottom panels in
Figure 21) show great promise. The reason for the strong correlation between the cooling rates and
KDP is that both parameters are dominated by contributions from smaller particles in the size spectrum
within the melting layer, whereas Z is heavily weighted by a few large melting snowflakes. Carlin and
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Ryzhkov [87] show that the cooling rate due to melting is proportional to the moment of the order 1.3
of the size distribution, whereas KDP is proportional to the moment of the order 1.1.
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Figure 20. (Left panel) Relative contributions to the cooling rate by different microphysical processes:
sublimation of graupel (SUBLg), sublimation of hail (SUBLh), melting of graupel (MELTg), melting of
hail (MELTh), evaporation of rain resulting from melted graupel and hail (EVAPh+g), and evaporation
of raindrops shed from melting hailstones (EVAPshed) as functions of height below the freezing level.
(Right panel) Vertical profile of cooling rates resulting from all diabatic processes. More details of the
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5. Conclusions

This paper provides an overview of several benefits that polarimetric weather radar may provide
to the cloud-modeling community in an effort to improve the performance of numerical weather
prediction (NWP) models and the microphysical parameterizations that they use. Polarimetric weather
radar data can be leveraged by NWP models with the use of microphysical and thermodynamic
retrievals or a polarimetric radar forward operator (PRFO). The retrieval concept essentially converts
radar information into quantities that the model prognoses, such as liquid or ice water content,
particle mean volume diameter, and number concentration, as well as the warming/cooling and
moistening/drying rates. The PRFO path converts the model output into polarimetric radar fields for
direct comparison with the radar observations.

A brief review of existing PRFOs is provided, with a list of necessary formulas for computing
polarimetric radar variables from the model outputs presented in the Appendix A. The use of PRFOs
with models employing spectral bin microphysics is relatively straightforward, whereas coupling the
PRFOs with models that use bulk microphysical parameterization requires certain adaptations, such
as the generation of artificial mixed-phase hydrometeor categories that are typically not produced in
bulk schemes.

The techniques for microphysical polarimetric retrievals in rain are relatively well-established, as
opposed to the retrievals in snow, which were introduced only recently. The retrieval equations for
ice/snow have been derived assuming an inverse dependence of particle density on the equivolume
diameter. Therefore, they cannot be used in areas dominated by graupel or hail. The ice microphysical
retrievals heavily rely on the reliable estimation of the specific differential phase (KDP), which may
require substantial spatial averaging.

Thermodynamic radar retrievals are a new frontier of research and show good promise, as the
areas of the phase transition of water, such as vapor condensation or snow melting, are usually
associated with pronounced polarimetric radar signatures. The way to quantify the rates of diabatic
warming/cooling and moistening/drying using polarimetric radar data is outlined in the article and
illustrated by a couple of examples.

This study describes several modifications in the HUCM, such as enabling the model to reproduce
realistic ZDR columns in the simulations, that result from the partnership between cloud modelers at
the Hebrew University of Jerusalem and radar meteorologists at the University of Oklahoma and the
National Severe Storms Laboratory. Such partnerships can be considered as a model to facilitate the
use of polarimetric weather radars for optimizing the performance of NWP models in a future.
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Appendix A

Expressions for polarimetric radar variables used in forward radar operators

Following Ryzhkov et al. [15], the radar variables can be computed from the output of NWP
models using average backward and forward-scattering amplitudes per unit volume and angular
moments characterizing the orientations of hydrometeors as follows:
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Zh =
4λ4

π5
∣∣∣Kw

∣∣∣2
{
<
∣∣∣∣s(π)b

∣∣∣∣2 > −2Re < [s(π)∗b (s(π)b − s(π)a )] > A2+ <
∣∣∣∣s(π)b − s(π)a

∣∣∣∣2 > A4

}
(A1)

Zv =
4λ4

π5
∣∣∣Kw

∣∣∣2
{
<
∣∣∣∣s(π)b

∣∣∣∣2 > −2Re < [s(π)∗b (s(π)b − s(π)a )] > A1+ <
∣∣∣∣s(π)b − s(π)a

∣∣∣∣2 > A3

}
(A2)

Zdr =
Zh
Zv

(A3)

Ldr =
4λ4

π4
∣∣∣Kw

∣∣∣2
<
∣∣∣∣s(π)b − s(π)a

∣∣∣∣2 > A5

Zh
(A4)

KDP =
0.18λ
π

< Re(s(0)b − s(0)a ) > (A1 −A2) (A5)

.

ρhv =
4λ4

π4
∣∣∣Kw

∣∣∣2
∣∣∣∣<∣∣∣∣s(π)b

∣∣∣∣2 > + <
∣∣∣∣s(π)b − s(π)a

∣∣∣∣2 > A5− < s(π)∗b (s(π)b − s(π)a ) > A1− < s(π)b (s(π)∗b − s(π)∗a ) > A2
∣∣∣∣

(ZhZv)
1/2

(A6)

Ah = −8.686λIm
[
< s(0)b > − < (s(0)b − s(0)a ) > A2

]
(A7)

ADP = −8.686λ Im(< s(0)b > − < s(0)a >)(A1 −A2) (A8)

where angular brackets indicate integration over particle size distribution N(D), e.g.,

<

∣∣∣∣∣s(π)b

∣∣∣∣∣2 >= ∫ ∣∣∣∣s(π)b (D)

∣∣∣∣∣2N(D)dD (A9)

The scattering amplitudes s(π,0)
a,b are computed either using the Rayleigh formulas for uniformly

filled and two-layer spheroids or numerical methods such as the T-matrix or others.
In (A1)–(A8), Zh,v = 100.1ZH,V(dBZ), Zdr = 100.1ZDR(dB), Ldr = 100.1LDR(dB), and Kw = (εw − 1)/(εw

+ 2), where εw is the dielectric constant of water, and radar wavelength λ and scattering amplitudes
sa,b are expressed in mm, Zh,v are in mm6m−3, KDP is in deg km−1, and Ah and ADP are in dB km−1.
Angular moments are defined as

A1 =< sin2 ψ cos2 α >, A2 =< sin2 ψ sin2 α >, A3 =< sin4 ψ cos4 α >,
A4 =< sin4 ψ sin4 α >, A5 =< sin4 ψ cos2 α sin2 α > .

(A10)

The expressions for the angular moments for different particle orientation types can be found in
Ryzhkov [9] and Ryzhkov and Zrnic [3] (their section 3.4 and Appendix B).

Attenuation effects are taken into account by using equations

Z̃h = Zh10−0.2
∫

Ah(s)ds (A11)

Z̃dr = Zdr10−0.2
∫

ADP(s)ds (A12)

L̃dr = Ldr100.1
∫

ADP(s)ds (A13)

where a tilde overbar denotes the radar variables affected by attenuation/differential attenuation.
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